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1. Introduction

With the advent of machine learning techniques in real-world applications, it has become
imperative that computer engineers who want to stay at the cutting edge of technology are able to
learn how to properly utilize these techniques for their own use. One of the most versatile
machine learning techniques that has emerged in recent years is reinforcement learning due to
the ability for agents utilizing this technique to learn how to properly complete any task given
proper training and enough time. Many applications have seen convenient packages or plugins
that make it easy for users to integrate reinforcement learning techniques into the application’s
environment, and Unity is no different. The "ML-Agents’ package for Unity provides a
convenient way to provide reinforcement learning within any environment, and understanding
how to properly utilize it is crucial for any machine learning engineer who wants to take
advantage of the Unity engine.

This project aims to implement a Unity environment with integrated reinforcement
learning based agents to provide the researchers with an understanding of how to properly utilize
the ML-Agents package within Unity. The goal environment is to train a model that can
effectively drive a somewhat realistic car across any track using a checkpoint system alongside
various components of the ML-Agents Unity package. In order to use ML-Agents, users must
run the ‘mlagents-learn.exe’ executable that must be installed within a Python environment
alongside the Unity project. The executable must be running within a separate terminal when the
Unity project starts for the two applications to be able to communicate. Since this process takes a
lot of time to implement, the researchers plan to provide a video detailing how the agents can

train through the package while also providing a final Unity project with multiple trained brains



with varying levels of efficiency to exemplify how the training has worked within the

environment.

2. Experimental Methodology

To begin understanding how to properly utilize the ML-Agents package in Unity, the
researchers determined that they should follow a tutorial on ML-Agents within a much more
simplified environment to get a grasp on how it properly works. The tutorials followed for this
initial implementation can be found at [3]. This initial experiment consisted of a simple block
agent, a square environment enclosed by walls, and a goal “egg” that the agent must collect. This
is a simplified environment where the agent only receives its own position and the position of the
goal as observations, and can only move by directly translating its X and Y positions. Shown in

Figure 1 is the prefab for the environment.

Figure 1: “Hungry Mort” initial ML-Agents testing environment.



Once the simplistic environment was created, with tags and colliders given to the
appropriate "GameObject's, the ML-Agents package was integrated into the project. To do so,

the researchers followed the installation instructions found at the ML-Agents GitHub Repo Web

Docs. This consisted of installing the correct Python version, creating a virtual environment, and
installing the required Python packages to use the ML-Agents package (‘torch’ and "mlagents’).
Once this was installed, the default configuration for the ML-Agents package within Unity, once
applied with its integrated components to the simple agent was enough to get it to train after
scripting the observations and the rewards for the agent. Once successfully integrated into the
project, the team was able to clone the environment multiple times to increase the speed at which

the agents effectively learned. This resulted in parallel training, exemplified within Figure 2.

Figure 2: “Hungry Mort” training environments.

This successfully ran multiple instances of the agent to learn how to effectively collect
the goal. In order to train the agents, the "'mlagents-learn.exe’ program must be run in a separate
window. This results in a server being run and exposed through a port. The output of running this

program can be seen in Figure 3.


https://unity-technologies.github.io/ml-agents/Installation/
https://unity-technologies.github.io/ml-agents/Installation/
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Figure 3: ‘'mlagents-learn.exe’ program running in terminal alongside Unity project.

Within Figure 3, it can be seen at the bottom that the mean reward increased substantially
close to the max of one for the environment. This demonstrated the agent was successfully able
to train to complete the task.

Once the team successfully implemented the training of the agents in the simple

environment, the researchers moved on to implementing the car controller that will be used



within the final project. In order to understand how to implement a car controller that mimicked
many of the controls of a realistic car, the researchers followed the tutorial playlist at [5] which
detailed how to create a car with a "RigidBody" that could interact with its environment like a
real car would. This tutorial went in-depth, providing realistic methods for control including a
steering curve, wheel colliders for the car prefab to provide physics-based feedback, engine
noise, proper engine simulation, and proper gear systems. However, to provide varying levels of
complexity for the agents to train at, the researchers implemented various versions of the car
controller with different levels of complexity. The “Simple Car” consisted of a car controller that
took in gas (also break) input and steering input through Unity’s New Input System and applied a
steering curve and physics-based acceleration via Unity’s physics engine with 'RigidBody's to
control a somewhat realistic car. Another “Complex Car” was created with the goal of
mimicking more of the functionality of a realistic car as aforementioned. With the successful

training of a model using the Simple Car, the Complex Car will be destined for future work.

Figure 4: “Simple Car” prefab with a box collider (disabled in practice), two mesh colliders for the body, and
four wheel colliders for the Unity physics engine to work with.



Shown in Figure 4 is the prefab for the simple car, taking an a free car prefab from the Free low

poly car pack by Nebula on the Unity Asset Store.

In order to begin training the car model, the team first implemented several tracks of

varying complexity using the free package Simple Roads by Stepan Drunks on the Unity Asset

Store. In addition to created several tracks, the team added checkpoints in order of progression to
the track to act as a reward mechanism, following the part of the Unity ML-Agents tutorial

Simple Checkpoint System by Code Monkey that was referenced in the simple ML-Agents car

tutorial at [3]. The simplest and first loop track created with checkpoints can be seen in Figure 5.

Figure 5: Simple left-looping oval track with checkpoints for training.

In order to see the walls within the track, the team then added the “Ray Perception Sensor
3D” component alongside the “Behavior Parameters” component and the agent script component
using the ML-Agents package to provide rays that return tag indices upon hitting colliders.
Through this, the agent can see surrounding walls and objects as needed. Shown in Figure 6 is a

car agent with the attached ray sensors.


https://assetstore.unity.com/packages/3d/vehicles/land/free-low-poly-car-pack-274606
https://assetstore.unity.com/packages/3d/vehicles/land/free-low-poly-car-pack-274606
https://assetstore.unity.com/packages/3d/environments/roadways/simple-roads-212360
https://www.youtube.com/watch?v=IOYNg6v9sfc

Figure 6: Ray Perception Sensor 3D component on car agents.

Once the agents were fully scripted and customized with a robust reward system of
checkpoints and walls, the project was successfully set up with only training required to

successfully develop the models.

3. Results

3.1. Completed Functionality

With the successful setup of the training environment and ML Agent, the following
functionality is presented within the completed project:
e Scenes with the “Hungry Mort” training environment for an ML-Agents introduction
e Two car controllers with varying levels of complexity
o “Simple Car” controller
= Simple steering and gas input through the New Input System
= ‘RigidBody" physics-based behavior with wheel/mesh colliders
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Used for training

o “Complex Car” controller

Realistic steering curves, slip angles, gear systems, engine simulations, an
RPM gauge, engine sound, and horsepower curve

Wheel collider friction coefficients designed for drifting

Enter scene “ComplexCar” if interested. "Shift’ for manual gear shift up
when min. RPM is reached (5500

Not used for training (future work)

e Several tracks with varying levels of complexity

e Checkpoint system for ML Agents

e Ray Perception Sensors with tags and colliders for additional agent observations

e Visualizations for training via ‘tensorboard” (provided through the ML-Agents package)

e Effective trained models for the "LoopLeft’, "LoopRight’, and "Figure8" tracks

o Models experimented with millions of steps (~9 hours)

o Models trained within a headless environment to permit more agents (used 150

agents for major models)

3.2. Original Techniques Beyond Tutorials

Although the team generally followed tutorials for the majority of the base

implementations (everything wasn’t that easy, and downloadable project files weren’t complete),

the team also implemented some original or further developed techniques beyond the tutorials.

While the novelty of the techniques in a broad sense is not considered, the team proudly presents

the following original implementations:

e (Custom made tracks using the Simple Roads by Stepan Drunks Unity asset



https://assetstore.unity.com/packages/3d/environments/roadways/simple-roads-212360

3.3.

All prefabs and "GameObject's were either based on a free Unity asset not in any of the

tutorials, or self-made

The Al Car tutorial by Code Monkey did not use the more complex Car Controller by

Nanousis Development, which required significantly more training

The checkpoints tutorial was incorrect for multiple agents. There were bugs that were not

noticed due to the simplistic nature of the tutorial controller
The trained models are completely original and developed through ML-Agents. The team
could not find another tutorial with ML-Agents used for this kind of car controller

o The team’s models learned to navigate with elevation

o The team utilized headless training to mass train agents, which also required

learning how to build projects within Unity

The statistics Ul window within Unity was not based on any tutorials
The complex car tutorials were followed to create a complex car, which is beyond the
scope of the minimum aim of the project

The imitation learning experimentation was based on Code Monkey's tutorial, and was

also beyond the aimed scope of the project

Model Evaluation

When training the models, ML-Agents goes through steps over time, which is dependent

on the engine time scale, the amount of agents, and other confounding factors. Regardless, this

results in an incomprehensibly expansive discrete spectrum of models to select from. To make

this usable for humans, ML-Agents takes checkpoints throughout the training process alongside

the final model compiled when the training stops. However, how does one understand the

performance of the models? This is accomplished through summaries of the checkpoint models’
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https://www.youtube.com/watch?v=2X5m_nDBvS4&list=PLzDRvYVwl53vehwiN_odYJkPBzcqFw110&index=5
https://www.youtube.com/playlist?list=PL0JXhw1odpJLTRBDdv4ybtYkuD1lEcF-N
https://www.youtube.com/playlist?list=PL0JXhw1odpJLTRBDdv4ybtYkuD1lEcF-N
https://www.youtube.com/watch?v=IOYNg6v9sfc
https://www.youtube.com/watch?v=supqT7kqpEI&list=PLzDRvYVwl53vehwiN_odYJkPBzcqFw110&index=2

performances with the "Mean Reward™ and the "Std. of Reward’ being the primary metrics for
comparison. These are effectively summarized through graphs within a built in “tensorboard
application that consolidates the reward values into something a human could interpret. The
primary means of evaluating the models within this project were through a cumulative reward
graph and a cumulative reward histogram. These visualizations showcase the general movement
of rewards over the course of training, which is sufficient for this simple project. Shown in

Figures 7 & 8 are the graphs from the large training experiment for the "LoopLeft’ model.

Environment/Cumulative Reward

Run Relative
[ ] headless_training_loop\SimpleCarAgent 34,750,000 8.597 hr

Figure 7: Cumulative reward against training steps for ‘LoopLeft’ model training experiment.

Environment/Cumulative Reward_hist

@ headless._training I...

Figure 8: Cumulative reward histogram for "LoopLeft' model. Each histogram (steps/time progresses downwards) represents
the distribution of rewards for the agents at the step count. The distribution shifting right over time signifies productive training.
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When training the models, the team encountered some fundamental issues within
reinforcement learning, with the primary issue being that more training doesn’t always equate to

better performance (see overfitting and/or double descent). In fact, although the team trained the

‘LoopLeft model for approximately 32M steps, the most effective model was trained at 2.5M
steps, demonstrating the need to be aware of proper reinforcement learning techniques.

Despite the challenges encountered, the team successfully developed models that could
traverse tracks that resemble the ones that they trained on, with the potential for scaling
complexity. Trained models are also available for future transfer learning, with great potential
for quickly adapting to tracks with new features. Shown in Figure 9 portrays an instantaneous

moment taken of the final effective models successfully navigating through a variety of tracks.

Figure 9: Agent cars running inference only on the trained effective models for tracks with varying complexity.
Top left loop track is left turning, with the other being right turning.
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https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Double_descent

Shown in Figure 10 is a side perspective view of the cars successfully navigating through the
more complex figure 8 track.

With the successful implementation of the ML-Agents package within the Unity project,
the team has completed the project. The models are able to effectively navigate through the
tracks despite the increased complexity, and demonstrate how the ML-Agents package can be

used to implement reinforcement learning techniques within a Unity environment.

Figure 10: Agent cars successfully navigating through the complex figure 8 track.

4. Discussion & Conclusion

4.1. Researcher Contributions

4.1.1. Steven’s Work
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Steven’s Work

Hungry Mort (Simple MLAgents Test)

- We both implemented our own versions for learning
purposes

Car and track prefabs

- Both complex and simple car controllers

Car controllers, input systems, and offset cameras (for players)

ML-Agent scripts for car agents

Modified car agent controllers to utilize checkpoints

Camera switching system

Trained Overnight Model of Simple Agent (LoopLeft track)

Although the work for the project was primarily done simultaneously (lots of overlap),
there were some notable delegations of work that differed between both researchers. Once both
researchers were past the initial learning stages for ML-Agents, which included following the

ML-Agents endorsed tutorials by Code Monkey, Steven proceeded to focus on implementing the

car controllers, the car agents, and integrating them into the systems required for ML-Agents to
have effective reinforcement learning for varying levels of complexity. This process consisted of
finding free Unity assets (please refer to Experimental Methodology for further details), and then

following Nanousis Development's car tutorials to implement two car controllers with varying

complexity to prepare for the implementation of reinforcement learning. This was an in-depth

process, which required a more developed understanding of how car physics is approximated and

can be replicated within Unity.
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https://www.youtube.com/watch?v=supqT7kqpEI&list=PLzDRvYVwl53vehwiN_odYJkPBzcqFw110&index=2
https://www.youtube.com/playlist?list=PL0JXhw1odpJLTRBDdv4ybtYkuD1lEcF-N

Once the car controllers, prefabs, and scenes were prepared for utilization, Steven
focused on integrating the ML-Agents package into the agents. This required adding components
to the "'GameObject's to provide observations, creating and adding a script to inherit and
implement the "Agent’ class within ML-Agents, and modifying values in the configuration,
inspector, and scripts to get a viable model. Note that this was also simultaneous.

To polish the final product for submission, Steven prepared several scenes and placed
checkpoints so the system could effectively work. Steven also added a camera system and
corrected positioning to provide for a more convenient user experience. Due to the intensive
computational power and time required to experiment with long-trained model, both researchers

trained models to learn how to drive in the track.

4.1.2. Erik’s Work

Erik’s Work

Hungry Mort (Simple MLAgents Test)
Hungry Mort Imitation Learning Test
Checkpoint System for Agents on Track
Debugged Simple Car Agent
Game Object Properties
Interactions with other Track Components
Tuned Simple Car Agent Model
Observations and Reward Criteria
Training Parameters
Implemented Headless Training on Built Environment

Trained Overnight Model of Simple Agent (Figure 8 track)



Erik mainly focused on Model Optimization and MLAgent’s Capability Research. Above
is a list of all major changes he contributed as the project developed. All team members initially
followed the basic Food Seeking Agent (Hungry Mort) tutorial with the goal of MLAgent’s
Familiarization. Erik took this Food Seeking Agent tutorial one step further by following an

Imitation learning tutorial [6]. This was to develop skills and understanding of the tools for later

optimization of Car Agent Models.

Figure 11: Checkpoints (Green Rectangles) on figure 8 track

Additionally, Erik created a checkpoint system for training multiple Car Agents on the
Same Track. This entails keeping track of each car’s progress through checkpoint segments. The
system will notify Agents as they pass through a checkpoint if it was the correct “next”
checkpoint or an incorrect one. This functionality can be found within: “CheckpointSingle.cs”,
“TrackCheckpoints.cs”, and “SimpleCarAgent.cs”.

Following Steven’s initial creation of the tracks and bare bones Car Agent, Erik
debugged several issues in Car -> Environment interaction. These were mostly Unity
Environment issues like tag, layer standardization, and recognition between collisions. Next, the
Observation and Reward systems were reworked and debugged. Ray Sensors which radiated out

the front of the car were hooked up to the Agent Observation parameters for the model along
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https://youtu.be/supqT7kqpEI?list=PLzDRvYVwl53vehwiN_odYJkPBzcqFw110

with state information of the car. State information includes current speed, current wheel angle,
direction to next checkpoint, and current direction.

The crux of this project lay in fine tuning model parameters and training settings. Erik did
much of this with the help of Steven, reading MLAgent’s documentation and progressively
tweaking the model structure until a stable model was converged upon. Once this point was
reached, Erik added Headless Server training to allow for multiple environments with many
agents to train at once. Headless training is also significant in that it uses a compiled unity
executable (instead of the editor window) and doesn’t require graphics. This new method yielded
immense computational benefits and vastly improved training speed.

Lastly, Erik used headless training on his Personal Computer overnight to create a Simple
Agent Car model which is optimized for the figure 8 track. It is important to note that while this
training ultimately didn’t converge on a “perfect” solution, it laid the groundwork for reasonable
time expectations of convergence in our Car Agent Scenario. Below are several figures
representing progress over 12 training hours.

The figure above shows a Reward Score Histogram for Agents at each training

Figure 12: Environment/Cumulative Reward Graph (Figure 8 Track)
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checkpoint. Larger peaks indicate a high number of agents at that score. Low peaks imply fewer
agents. As you move down the graph, the model gets more and more optimized and thus scores
higher values.

Here we can see an interesting pattern where as the model tries to optimize for further
along the track, the overall performance has a sharp decline and hits the same waveform as

previous training to climb back up to the top.

Figure 13: Reward Score Histogram for Simple Car Agent Training (Figure 8 Track)

4.2. Future Work

This project was a basic introduction to the machine-learning based tools available within
Unity. The following lists details prospective ideas the researchers have for future work on this
or a similar project:

- Add more in-game visualizations that reflect graphs in “tensorboard

- Switch to a checkpoint-less spline reward system that can be (somehow) conveniently

implemented into any track
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- Implement a mouse-based selection control to isolate and visualize trainings/statistics
of independent agents

- Add obstacles to tracks

- Train models on complex car

- Tire trails, get models to learn to drift, music, and animations

The researchers thoroughly enjoyed this project and look forward to further developing

their understanding of data science and computer graphics.
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