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Abstract001

Prompts serve as the foundation of genera-002
tive AI outputs, especially in the context of003
image generation. By altering the language,004
from changing specific key words to adding005
more information, the results can vary signif-006
icantly. In this paper, we focus on how us-007
ing different key phrases affects the output of008
generative image models. Specifically, this009
approach leverages metrics that estimate im-010
age quality in an attempt to identify how key011
phrases impact perceived quality. Using Dif-012
fusionDB’s dataset of approximately 2,603013
prompt-image pairs along with hyperparame-014
ter information, we develop predictions models015
for 49 different image quality metrics, includ-016
ing Blind/Referenceless Image Spatial Quality017
Evaluator (BRISQUE), Natural Image Quality018
Evaluator (NIQE), and Perception-Based Im-019
age Quality Evaluator (PIQE). Through this020
analysis, we aim to uncover insights into021
prompt structure and keyword choice to bet-022
ter understand how natural language influences023
image generation, offering users greater con-024
trol over the quality of their generated results025
and potentially enabling future methods of pre-026
dicting image quality directly from the prompt,027
reducing the need for expensive image genera-028
tion.029

1 Introduction030

As generative AI continues to grow in popularity,031

there has emerged an urgent need to streamline032

methods to filter by quality for any form of content.033

The areas of the internet that were once feasible034

to navigate through are quickly becoming flooded035

with new content, much of which is naturally much036

lower quality due to the lowered skill floor for con-037

tent curation and the natural distribution based on038

computational resource need. As such, benchmarks039

and new metrics have continued to emerge includ-040

ing new visual quality assessments that also lever-041

age new advances in AI (e.g. Wu et al., 2024).042

With these new quality metrics, new techniques be- 043

come feasible for potential optimizations in content 044

generation. 045

This project aims to systematically investigate 046

how different prompt construction techniques and 047

descriptive keywords-such as those denoting cam- 048

era models, resolution, scene themes, and artis- 049

tic styles-influence the output of generative image 050

models. It is well known that prompt engineering 051

is an important staple for efficient generative AI 052

usage, and this project aims to further the under- 053

standing of how it can be utilized by the user to 054

optimize standardized quality metrics. 055

2 Datasets 056

There exist several large-scale datasets that pair 057

prompts with generated images, including diffu- 058

siondb (Wang et al., 2022), open-prompts, and 059

Lexica. These datasets provide a foundation for 060

our analyses, with millions of prompt-image pairs. 061

Prior work in this space has focused directly 062

on prompt behaviors Jahani et al.’s (2024), Liu 063

and Chilton’s (2022), Shin et al.’s (2024), auto- 064

mated prompt systhesis Cao et al.’s (2023), prompt- 065

induced bias Shin et al.’s (2024), and seantic align- 066

ment between prompt and output Zhan et al.’s 067

(2024). However, few studies have applied sys- 068

tematic computer vision analyses that utilize vision 069

quality assessment metrics to quantitatively evalu- 070

ate prompt effects across model outputs. 071

To address this gap, our approach involves: (1) 072

identifying key visual quality metrics; (2) build- 073

ing a dataset-agnostic pipeline for both image and 074

prompt analysis; (3) characterizing prompt struc- 075

tures and keywords; and (4) comparing trends 076

across datasets and domains. Through this anal- 077

ysis we aim to surface actionable insights that help 078

users craft more effective prompts for specific met- 079

rics. 080
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Figure 1: Pipelines for data processing.

3 Metrics081

Using Chen’s (2024) PyTorch Toolbox for Image082

Quality Assessment, we were able to generate the083

mainstream full reference and no reference metrics.084

In this section, we will elaborate on 8 of the most085

popular metrics out of the 49 generated. These will086

be Blind/Referenceless Image Spatial Quality Eval-087

uator (BRISQUE), Natural Image Quality Evalua-088

tor (NIQE), Perception-based Image Quality Eval-089

uator (PIQE), Deep Bilinear Convolutional Neu-090

ral Network (DBCNN), Multi-scale Image Quality091

Transformer (MUSIQ), Perceptual Assessment of092

Quality for Quality Prediction (PAQ2PIQ), Neu-093

ral Image Assessment (NIMA), and No-Reference094

Quality Metric (NRQM). These metrics will help095

define and identify the prompt structures and key-096

words to focus on.097

4 Experimental Methodology098

We evaluate two parallel modeling pipelines to pre-099

dict image quality metrics based solely on the tex-100

tual prompts used to generate the images. The101

supervised pipeline embeds prompts into continu-102

ous representations using BERT [CLS] token em-103

beddings, supplemented with handcrafted prompt104

features, and trains supervised regressors to pre-105

dict quality scores. In contrast, the unsupervised106

pipeline extracts keyphrases from prompts using107

KeyBERT, represents them through TF-IDF vec-108

torization, and applies simpler regressors without109

relying on deep embeddings. Both pipelines em-110

ploy cross-validation and are evaluated using mean111

squared error (MSE), mean absolute error (MAE),112

and coefficient of determination (R2) as perfor-113

mance metrics. Please refer to Figure 1 for an114

overview of the two different pipelines.115

4.1 Pre Processing 116

For the supervised pipelines, each prompt is em- 117

bedded into a 768-dimensional vector using the 118

[CLS] token from a pre-trained BERT model 119

(bert-base-uncased). Additional handcrafted 120

features are extracted from the prompts, includ- 121

ing word count, unique word count, comma count, 122

a custom complexity score, number of adjectives, 123

and number of named entities. These structured 124

features are standardized using a StandardScaler, 125

and then concatenated with the BERT embeddings 126

to form the final input feature set for supervised 127

models. 128

For the unsupervised pipelines, KeyBERT 129

is used to extract a set of top keywords for 130

each prompt, using a sentence-transformer model 131

(all-MiniLM-L6-v2). These extracted keyphrases 132

are cached to disk to improve efficiency and repro- 133

ducibility. The keyphrases are then vectorized us- 134

ing TF-IDF, treating multi-word phrases as atomic 135

tokens by customizing the tokenizer. The resulting 136

sparse TF-IDF matrix is used directly as input to 137

the unsupervised models without further scaling or 138

normalization. 139

4.2 Processing 140

In the supervised pipeline, the feature ma- 141

trix is constructed by concatenating the 768- 142

dimensional BERT [CLS] embeddings with stan- 143

dardized prompt-derived features. Models includ- 144

ing multilayer perceptrons (MLP), random forests, 145

gradient boosting regressors, and support vector re- 146

gressors are trained using five-fold cross-validation. 147

Hyperparameters are tuned via grid search over 148

a predefined space for each model class. In 149

the unsupervised pipeline, prompts are first trans- 150

formed into cached KeyBERT keyword sets, which 151

are then vectorized using TF-IDF. Regressors are 152

trained directly on these sparse TF-IDF features fol- 153

lowing the same cross-validation and grid search 154

procedure. 155

4.3 Post Processing 156

After model training and evaluation, SHAP (SHap- 157

ley Additive exPlanations) analysis is conducted to 158

interpret model predictions. For supervised models, 159

SHAP values are computed on the combined BERT 160

and structured features, while for unsupervised 161

models, SHAP values are computed over the TF- 162

IDF feature space. The mean absolute SHAP value 163

for each feature is aggregated and saved for anal- 164
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IQA Metric Description
BRISQUE No-reference IQA metric that evaluates image distortion and naturalness.
NIQE No-reference IQA metric that estimates image quality based on statistical properties
PIQE No-reference IQA metric that estimates perceptual quality based on spatial and statistical features
DBCNN Deep-learning model trained on large-scale datasets
MUSIQ Transformer-based IQA metric that analyzes images at multiple scales
PAQ2PIQ Deep-learning model predicting perceptual image quality from human-labeled datasets
NIMA A model that predicts human aesthetic ratings based on deep-learrning techniques
NRQM No-reference IQA metric that uses natural scene statistics to predict perceived quality

Table 1: 8 Most Common Image Quality Assessments (IQA) and Descriptions

ysis. In addition, summary plots and per-feature165

CSV files are generated to facilitate further interpre-166

tation of key features driving model performance167

across both pipelines.168

5 Results169

5.1 Model Performance Metrics170

Model Evaluation Metrics. We evaluated model171

performance using the coefficient of determina-172

tion (R2), mean absolute error (MAE), and mean173

squared error (MSE). These metrics offer comple-174

mentary perspectives: R2 measures the proportion175

of variance explained by the model, while MAE176

and MSE reflect the magnitude of prediction errors,177

with MSE penalizing large errors more heavily. To-178

gether, they provide a robust view of predictive179

accuracy and stability across both supervised and180

unsupervised approaches.181

Supervised vs. Unsupervised Models. As182

shown in Figure 2, supervised models consistently183

outperform unsupervised ones across most met-184

rics, with notably higher R2 values and lower185

MAE/MSE values (Figures 3 and 4). Among186

supervised models, Random Forest and Gradi-187

ent Boosting generally achieve the highest R2188

scores and lowest errors, suggesting strong gen-189

eralization capabilities with modest complexity.190

SVR also performs well but tends to have slightly191

higher variance in performance. On the other hand,192

ANN (MLPRegressor) underperforms relative to193

the other supervised models, especially in terms of194

R2, potentially due to overfitting or sensitivity to195

initialization and learning rate in smaller datasets.196

Among the unsupervised models, Gradient197

Boosting and Random Forest using TF-IDF key-198

word features demonstrate relatively stronger per-199

formance, although still significantly behind their200

supervised counterparts. KeyBERT+MLP, while201

intuitive and interpretable, frequently achieves the 202

lowest R2 scores and highest error rates, reflecting 203

the limitations of sparse keyword representations 204

in capturing the rich semantics of prompts. 205

Understanding Low R2 Scores. Although R2 206

values across models rarely exceed 0.5, this should 207

not be interpreted as a failure of the approach. 208

Instead, it reflects the inherent noise and unpre- 209

dictability in the prompt-to-image generation pro- 210

cess. Generative image models often include el- 211

ements of randomness, multimodality, and latent 212

conditioning (e.g., training biases, aesthetic priors) 213

that are not captured by the prompt alone. Con- 214

sequently, even highly descriptive prompts may 215

not deterministically map to the final image qual- 216

ity, introducing irreducible noise into the target 217

signal. Despite this, the models’ ability to explain 218

even 20–40% of the variance across multiple image 219

quality metrics indicates that prompts contain gen- 220

uine, learnable structure related to output quality. 221

These results highlight the potential for prompt- 222

based analytics in downstream tasks like prompt 223

optimization or filtering without requiring full im- 224

age generation. 225

Implications for Model Design. These findings 226

suggest that dense, contextualized representations 227

like BERT embeddings paired with structured 228

prompt features offer superior predictive value 229

for modeling image quality from prompts. Mod- 230

els leveraging these inputs outperform traditional 231

keyword-based pipelines by a substantial margin. 232

Random Forest and Gradient Boosting emerge as 233

robust, high-performing choices for supervised re- 234

gression in this domain, striking a balance between 235

interpretability and predictive power. 236

5.2 SHAP Analyses 237

SHAP Analysis of Prompt Feature Contribu- 238

tions. To investigate the relationship between 239
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Figure 2: R2 scores across all models and metrics.
Higher is better. Supervised Random Forest and Gradi-
ent Boosting models consistently outperform others.

Figure 3: MAE scores across models and metrics.
Lower is better. Supervised models generally yield
smaller prediction errors.

prompt composition and resulting image quality, a240

SHAP (SHapley Additive exPlanations) analysis241

was conducted to quantify the influence of indi-242

vidual prompt features on various quality metrics.243

Figure 5 illustrates an example SHAP explanation244

for the BRISQUE metric using a Random Forest245

model. Notably, tokens such as portrait, painting,246

and photography exhibit strong feature contribu-247

tions, indicating a substantial effect on the pre-248

dicted BRISQUE values. Given that BRISQUE249

measures deviations from natural scene statistics250

(NSS) in the spatial domain, lower scores corre-251

spond to fewer distortions, a more natural appear-252

ance, and higher perceptual quality. Thus, prompt253

features with strong negative SHAP values are as-254

sociated with improved image outputs. Figure 6255

presents a cumulative SHAP contribution curve256

summarizing the overall influence of key phrases257

across all metrics. The x-axis represents ranked258

prompt features, ordered by their individual SHAP259

impact, while the y-axis reflects the cumulative260

percentage of the model’s total explainable output261

variance. The curve indicates that approximately262

200 key phrases are required to account for 80%263

of the cumulative SHAP contribution, highlight-264

ing the wide distribution of influential language265

Figure 4: MSE scores across models and metrics.
Higher is better. Gradient Boosting and Random Forest
maintain low error magnitudes across metrics.

Figure 5: Example SHAP explanation for the Random
Forest model for the BRISQUE metric (lower values
represent a better BRISQUE metric)

components within prompts. 266

5.3 Important Keyphrases 267

Top tokens and Word Cloud Visualizations 268

The results demonstrate that specific tokens and 269

phrases significantly influence the characteristics 270

of generated images. Figure 7 identifies tokens 271

with the strongest impact. Among these, the three 272

most impactful words—film, painting, and por- 273

trait—exhibit a pronounced effect on image gen- 274

eration. A word cloud visualization, shown in Fig- 275

ure 8, further highlights these influential tokens 276

where size equates to impact. 277

Cluster Analysis Figure 9 presents a UMAP- 278

based cluster visualization annotated with thematic 279
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Figure 6: Cumulative SHAP Contribution Curve

labels. Densely packed and centralized clusters280

correspond to distinct aesthetic and thematic cate-281

gories, such as Artistic Influences and Dark Surreal-282

ism. The size of each cluster reflects thematic vari-283

ability: larger clusters, such as Artistic Influences,284

encompass a broader range of variations, whereas285

smaller clusters, such as Divine Cloud Imagery,286

produce more consistent and homogeneous outputs.287

The spatial arrangement of clusters further reveals288

semantic relationships. For instance, Artistic In-289

fluences and Divine Cloud Imagery are positioned290

furthest apart, indicating significant differences in291

both visual and semantic style. In contrast, clus-292

ters positioned closely together, such as Science293

Fiction Scenes and Alien Encounters, exhibit over-294

lapping thematic qualities. The clear separation295

between clusters suggests that the selected features296

effectively capture meaningful distinctions in the297

data.298

6 Conclusion299

This paper investigates the influence of specific300

prompt keywords on the output of generative im-301

age models. By analyzing various tokens and key-302

phrases, terms such as painting, portrait, and film303

significantly impact the visual characteristics of304

generated images. Through the use of different305

IQA metrics, models, and performing SHAP analy-306

sis, we have provided insights into the relationship307

between prompt structure and image quality.308

The results show that prompt engineering plays309

a crucial role in shaping the thematic and aesthetic310

qualities of generated content. In particular, Fig-311

ure 9 reveals how distinct prompt features corre-312

spond to different thematic categories, with clear313

separations between clusters reflecting meaningful314

distinctions in both visual and semantic aspects.315

Our findings highlight the potential of prompt316

optimization to enhance user control over the gen-317

Figure 7: Top 20 Keyphrases across all 4 unsupervised
models for all 49 metrics for all 2603 image-prompt
pairs.

Figure 8: Word Cloud Representation of Top
Keyphrases

erated image quality. Further research could focus 318

on refining prompt structures for more fine-grained 319

control, as well as exploring the integration of pre- 320

dictive models for image quality directly from the 321

prompt, which would reduce the need for resource- 322

intensive image generation processes. Overall, this 323

work contributes to a deeper understanding of how 324

prompt engineering can be utilized to optimize the 325

performance of generative image models. 326
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Figure 9: UMAP Embedding with Clustering Labels
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Figure 10: Top 20 Key-Phrases for GradientBoosting

Figure 11: Top 20 Key-Phrases for KeyBert

Figure 12: Top 20 Key-Phrases for RandomForest

Figure 13: Top 20 Key-Phrases for SVR
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IQA Metric Description
Arniqa No-reference IQA metric assessing image distortion and quality.
Arniqa_clive Arniqa variant optimized for the CLIVE dataset.
Arniqa_csiq Arniqa model trained on CSIQ dataset, focusing on perceptual quality.
Arniqa_flive Arniqa trained on the LIVE dataset for no-reference quality prediction.
Arniqa_kadid Arniqa metric for Kadid dataset with natural image quality characteristics.
Arniqa_live Live dataset-based model for no-reference quality assessment.
Arniqa_spaq Arniqa variant trained on SPAQ dataset for quality prediction.
Arniqa_tid Arniqa model designed for the TID dataset, predicting perceived quality.
Brisque No-reference IQA metric for evaluating image distortion and naturalness.
Brisque_matlab MATLAB implementation of BRISQUE for quality assessment.
Clipiqa Deep learning-based IQA metric using CLIP model for perceptual quality.
Clipiqa_ Variation of Clipiqa using alternative preprocessing for quality prediction.
Clipiqa__rn50_512 Clipiqa variant using ResNet50 for image quality evaluation.
Clipiqa__vitL14_512 Clipiqa model utilizing Vision Transformer for perceptual quality.
Cnniqa CNN-based IQA metric for no-reference quality evaluation.
Dbcnn Deep learning-based model trained on large-scale datasets for IQA.
Entropy Entropy-based metric assessing randomness in an image for quality.
Hyperiqa Hyperparameters-based deep learning model for image quality assessment.
Ilniqe No-reference IQA metric using local image features for quality evaluation.
Laion_aes Aesthetic score model that evaluates images for quality.
Liqe No-reference IQA metric based on statistical image features.
Liqe_mix Hybrid model combining multiple feature sets for image quality prediction.
Maniqa Deep learning-based model for general image quality assessment.
Maniqa_kadid ManIQA optimized for Kadid dataset, focused on perceptual quality.
Maniqa_pipal ManIQA variant for PIPAL dataset, evaluating perceptual quality.
Musiq Transformer-based IQA model that analyzes image quality at multiple scales.
Musiq_ava AVA-based dataset model for aesthetic quality evaluation.
Musiq_paq2piq MUSIQ model trained on PAQ2PIQ dataset for perceptual quality prediction.
Musiq_spaq MUSIQ trained on SPAQ dataset for perceptual image quality.
Nima Deep learning model predicting human aesthetic ratings for images.
Nima_koniq NIMA model trained on KONIQ dataset for aesthetic image quality prediction.
Nima_spaq NIMA trained on SPAQ dataset for perceptual quality evaluation.
Nima_vgg16_ava NIMA variant using VGG16 features for aesthetic score prediction.
Niqe No-reference IQA metric based on natural scene statistics for quality.
Niqe_matlab MATLAB implementation of NIQE for quality assessment.
Nrqm No-reference IQA metric using natural scene statistics for image quality.
Paq2piq Deep learning model predicting perceptual quality from human-labeled datasets.
Pi Perceptual IQA model based on image feature statistics.
Piqe Image quality evaluation metric focused on perceptual features.
Qalign Metric for assessing alignment and similarity in image quality.
Qalign_8bit Version of Qalign for evaluating 8-bit image quality.
Topiq_iaa Top-IQA model using IAA for quality prediction.
Topiq_iaa_res50 Top-IQA with ResNet50 architecture for image quality prediction.
Topiq_nr No-reference Top-IQA model for image quality evaluation.
Topiq_nr_flive Top-IQA model trained on the FLIVE dataset for no-reference quality.
Topiq_nr_spaq No-reference Top-IQA model trained on the SPAQ dataset.
Tres Model for quality assessment based on texture features in images.
Tres_flive Variation of Tres model focused on the FLIVE dataset for quality prediction.
Unique A unique model evaluating image quality based on specific features.
Uranker Ranking-based model for evaluating image quality.
Wadiqam_nr Wadiqam for no-reference quality prediction with image-specific focus.

Table 2: All Calculated Image Quality Assessment (IQA) Metrics and Descriptions
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Keyphrase Adjusted Scaled Mean SHAP
painting 0.3132
portrait 0.2929
film 0.2588
matte painting 0.1507
art 0.1457
concept art 0.1343
digital painting 0.1342
artstation 0.1203
painting sargent 0.1192
unreal engine 0.0995
photorealistic 0.0977
digital art 0.0851
illustration art 0.0849
anime 0.0832
deviantart 0.0790
deviantart realistic 0.0771
cinematic composition 0.0770
photography 0.0705
oil painting 0.0699
mid century 0.0685
artwork 0.0678
cyberpunk 0.0650
clouds 0.0635
scene 0.0617
matte 0.0598
surrealism 0.0598
fantasy art 0.0593
steampunk 0.0592
high quality 0.0581
artstation hyperrealism 0.0581
painting beautiful 0.0573
surreal 0.0566
fiction film 0.0565
goddess 0.0563
movie 0.0545
comprehensive art 0.0530
character portrait 0.0526
peter 0.0525
picasso 0.0524
beksinski 0.0519
gordon 0.0518
cinematic 0.0516
earth 0.0511
painting artstation 0.0507
manga 0.0500
footage 0.0498
photograph 0.0497
fantasy painting 0.0489
intricate details 0.0483
castle 0.0482

Table 3: Top Keyphrases Ranked by Adjusted Scaled Mean SHAP
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